The Block Preconditioned Steepest Descent Iteration for Elliptic Operator Eigenvalue Problems

نویسندگان

  • KLAUS NEYMEYR
  • MING ZHOU
چکیده

The block preconditioned steepest descent iteration is an iterative eigensolver for subspace eigenvalue and eigenvector computations. An important area of application of the method is the approximate solution of mesh eigenproblems for self-adjoint and elliptic partial differential operators. The subspace iteration allows to compute some of the smallest eigenvalues together with the associated invariant subspaces simultaneously. The building blocks of the iteration are the computation of the preconditioned residual subspace for the current iteration subspace and the application of the Rayleigh-Ritz method in order to extract an improved subspace iterate. The convergence analysis of this iteration provides new sharp estimates for the Ritz values. It is based on the analysis of the vectorial preconditioned steepest descent iteration which appeared in SIAM J. Numer. Anal., 50(6):3188-3207, 2012. Numerical experiments using a finite element discretization of the Laplacian with up to 5 · 107 degrees of freedom and with multigrid preconditioning demonstrate the near-optimal complexity of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On preconditioned eigensolvers and Invert-Lanczos processes

This paper deals with the convergence analysis of various preconditioned iterations to compute the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory for some of these solvers is not very well understood. The aim is to show that precond...

متن کامل

A Geometric Convergence Theory for the Preconditioned Steepest Descent Iteration

Preconditioned gradient iterations for very large eigenvalue problems are efficient solvers with growing popularity. However, only for the simplest preconditioned eigensolver, namely the preconditioned gradient iteration (or preconditioned inverse iteration) with fixed step size, sharp non-asymptotic convergence estimates are known. These estimates require a properly scaled preconditioner. In t...

متن کامل

Convergence analysis of a locally accelerated preconditioned steepest descent method for Hermitian-definite generalized eigenvalue problems

By extending the classical analysis techniques due to Samokish, Faddeev and Faddeeva, and Longsine and McCormick among others, we prove the convergence of preconditioned steepest descent with implicit deflation (PSD-id) method for solving Hermitian-definite generalized eigenvalue problems. Furthermore, we derive a nonasymptotic estimate of the rate of convergence of the PSD-id method. We show t...

متن کامل

Sobolev gradients: a nonlinear equivalent operator theory in preconditioned numerical methods for elliptic PDEs

Solution methods for nonlinear boundary value problems form one of the most important topics in applied mathematics and, similarly to linear equations, preconditioned iterative methods are the most efficient tools to solve such problems. For linear equations, the theory of equivalent operators in Hilbert space has proved an efficient organized framework for the study of preconditioners [6, 9], ...

متن کامل

Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing nonorthogonal basis functions for ab initio electronic structure calculations. In this paper, we propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014